
1

Parallel NEC
Kaddy Marindi (1416262)

School of Electrical and Information Engineering
University of Witwatersrand, Johannesburg

Subject : ‘Laboratory Project
Course Code : ELEN4012A

Supervisor : Prof. Alan Clark

Abstract—This paper presents project to parallelize ELec-
tromagnetic Numerical Code (NEC). The objective of is to
enhance the computational performance of NEC2++ (an open-
source implementation of NEC writeen in C++) by utilizing
a distributed multicore architecture consisting of a 16-node
cluster, with each node equipped with a four-core processor.
The code is parallelized in a hybrid approach using OpenMP
libray for shared memory, multithreading, parallelization and
MPI library for distributed memory parallelization. NEC2++
computational-intesive operations—namely, the matrix filling, the
LU decomposition, and the matrix solution solve—are analayzed
and parallelized. The matrix is evenly distributed among the
nodes using a cyclical distribution layout. LU decompsition is
solved using level 3 BLAS, and it resulted in 4 times performce
gain when the number of nodes are increased to 8.

I. INTRODUCTION

The Numerical Electromagnetic Code (NEC) program is
commonly used for the design of televisions, radios, and
other devices to model the electromagnetic response of
surface antennas, wires, and metal structures [5], [6]. While
NEC2 was originally designed to run on mainframes, newer
versions like NEC2++ have been ported to run on PCs [1].
However, a major challenge when running NEC on a PC is
its slow execution speed and the limited size of structures
that can be analyzed due to insufficient memory [1]. In the
past, NEC has been parallelized using computer clusters with
single-core processors [1]–[3]. However, the recent shift to
multicore processor architectures has introduced new tools,
such as OpenMP, that allow for multithreading parallelization
in multicore shared memory systems, which is significantly
faster than distributed memory systems due to data locality.

This paper presents an investigation project aimed at
improving the computation time of NEC2++ and expanding
the size of structures that can be analyzed by parallelizing
the code in a distributed multicore architecture with a 16-
node cluster. A hybrid approach is employed, utilizing both
distributed parallelization among the nodes and multithreading
parallelization using multicore processors within the nodes
by leveraging the MPI and OpenMP libraries, respectively.
Additionally, the MKL BLAS library is used to achieve
optimal numerical computation speed.

The first section of this paper provides the background
information, followed by an iterative approach to parallelizing

NEC2++. The results are then analyzed and discussed, leading
to the conclusion of the paper.

II. BACKGROUND

The first operation NEC does is to calculate the interaction
matrix of the wires. The interaction matrix is calculated
between the wire segments, N making the structure, which
results in an interaction matrix of size N ×N [1]. Where N
is the sum of all the segments in each wire. The excitation
vector E⃗ is calculated as a function of the sources wires [1].

A11 A12 ... A1N

A21 A22 ... A2N

. . . .

. . . .
AN1 AN2 ... ANN

×

I1
I2
.
.
IN

 =

E1

E2

.

.
EN

 (1)

Where Aij is the interaction between segment i and j, Ii is the
current on the segment i which can be calculated by solving
matrix equ. (1) and Ei is the excitation on segment i excitation
[1].

A. Structure memory usage

An approximation of the memory in bytes required to
analyze the structure with N segments is given by

Mem = N2 · 16 (2)

According to equ. (2) the memory required for N segments
has a quadratic growth with the number of segments [2].
For a large number of segments, the RAM size will be
the limiting factor. A structure with 14746 segments will
require approximately 3.5GB of RAM. Assuming that we
are working with a commonly available 4GB RAM PC, the
number of segments that can fit in memory cannot exceed
14746 segments.

B. Intensive operations

NEC has three intensive operations that are worth paral-
lelizing:

1) The A-matrix by calculating the interaction between
segments. It requires O(N2) operations.

2) LU decomposition of the A-matrix factorization into
permutation, lower and upper triangle (PLU) is the most
time-consuming operation which requires O(N3) simple
operations.

3) Solving of I⃗ , requires O(N2) operations using forward
and backward substitution.

III. PARALLELIZING NEC2++ CODE

A. Code Structure

NEC2++ code is written in C++ object orientation style,
which makes it easy to modify and add new functionality
[8]. NEC2++ has a lot of files and functions that are hard
to navigate. Table 1 below shows functions modified when
parallelizing NEC2++ and their file location.

TABLE I
THE FILES AND FUNCTION MODIFIED WHEN PARALLELIZING THE CODE.

File functions
nec context.cpp/h cmset(..)
nec context.cpp/h cmwww(..)

matrix algebra.cpp/h Lu decompose(..)
matrix algebra.cpp.h solve ge(..)

test cpp.cpp main(..)

cmset(..) and cmwww(..) functions are responsible
for matrix filling. cmwww(..) is called within cmset(..).
Lu decompose(..) is responsible for LU factorization.
The solving of matrix equ. (1) in order to find Ii is done in
solve ge(..) function. test cpp.cpp is used for initial-
izing NEC, adding the wire structure and for compiling the
code.

B. Matrix distribution layouts

There are different layouts that can be used for distributing
a dense matrix in the cluster nodes Pn. The layout used for the
distribution of the matrix has a major impact on load balance
and communication amongst the processors which critically
affects the scalability of parallel code [7]. In addition,
the layout chosen should allow the use of level 3 BLAS
operations in a single processor. Level 3 Blas operations give
processor pick performance for basic matrix-matrix algebra
and are exceedingly faster than level 1 and 2 BLAS operations.

There are four layouts considered for data distribution,
namely: the one-dimension block, cyclical column, the
one-dimension block cyclical column, and the two-dimension
block cyclical distribution. The two-dimension cyclical block
layout depicted in fig.1 gives the best even distribution
between the processor, which avoid processor idling and
allow the use of level 3 BLAS operation when doing Gaussian
elimination (LU factorization).

A 2-D block cyclical distribution is described by four
variables, P , Q, β. Where P ×Q describes the processor grid
as shown inf fig. 1 and β × β is the block size. The global
indexing of the block is m → ⟨p, b, i⟩, where p, b, i is the

Fig. 1. cyclical block distribution over P ×Q processor grid.

processor index, block number within the processor and index
within the block respectively.

m→ ⟨s mod P,
s

P
,m mod β⟩ (3)

where s is the number of blocks defined as the number of
rows or columns divide by β. We deduced that the processor
to which the block belongs can simple be calculated using
equ. (4).

rank = (i mod Q)× P + j mod Q (4)

where processor rank is from 0 to (T − 1). i and j are
the global row and column block index. T is the number of
processors and T = Q× P .

Cyclical distribution allows analysis of a large structure with
many segments that would not fit in a single machine. The
local portion of the global matrix distributed to each processor
has a size N

P ×
N
Q .

C. Parallel matrix filling.

Parallel matrix filling was implemented in this solution us-
ing algo. 1 does not significantly change the original NEC2++
matrix filling code. There are two basic operations added to the
original solution which are also illustrated in the flow diagram
in fig. 2.

Algorithm 1 Matrix filling
procedure CMSET(∗A,nrow)

for i← 0, row do
for j ← 0, row do

bi ← i/blockSize
bj ← j/blockSize
i′ ← offset i index
j′ = offsetjindex
A[j′ ∗ (nrow/Q) + i′]← calculate the interaction

end for
end for=0

The first step is checking if the interaction element Ai,j

belongs to the local processor by checking if the processor
rank is equal to equ. (4). If it does, then Ai,j is offset to fit
in the local interaction matrix using equ. (5).

2

Fig. 2. Parallelizing NEC flow diagram.

i′ =
i

βb · P
+ i mod nb

j′ =
i

βb · P
+ i mod nb

(5)

Where i and j are a row and column global index of the
interaction matrix. i′ and i′ is the local index in the processor
that the interaction element is stored in.

D. LU decomposition

Computer spent most of the time finding the solution of a
matrix of equations, in order to do that effectively, a matrix is
first factorized into a lower (L) and upper (U) triangular matrix
such that A = LU . Parallelizing the LU factorization matrix is

quite a complex process, thus an iterative process was taken to
parallelize LU factorization. The first thing was to implement
simple serial LU factorization in a single machine shown in
algo. 2. Parallel LU is compared with serial LU solution for
correctness.

Algorithm 2 Simple LU factorization
procedure LUDECOMPSE(∗A,n)

for i← 0, n do
for j ← i+ 1, n do

A[j × n+ i]/ = A[i× n+ i]
for k ← 1 + 1, n do

A[j][k]− = A[j × n+ i] ∗A[i× n+ k]
end for

end for
end for=0

1) Derivation of a Block Algo. for LU factorization:
Provided N × N matrix A partitioned in blocks which is
factorized to L and U matrix also partitioned in blocks as
shown in fig. 3 below. Where a size of A00 is β×β, A10 and
A01 are β × (N − β) and (N − β) × β matrix, and A11 is
(N − β)× (N − β) matrix.

Fig. 3. Block LU factorization for partitioned matrix-A

L00U00 = A00 (6)

L10U00 = A10 (7)

L00U01 = A01 (8)

L10U01 + L11U11 = A11 (9)

Equ. 6 is solved using regular LU factorization in Alg. 1.
Once L00 and U00 are determined, they can be used to solve
L10 and U01 in equ. 7 using BLAS 3 triangular matrix solve
operation ztrs.

L11U11 = A11 − L10U01 = A′
11 (10)

Equ. (10) is obtained from equ. (9) by moving the right hand
side to the left. Where A′

11 is computed using level 3 Blass
matrix-matrix multiplication operation cblas zgemm.

Fig. 4. Iterative LU decomposition steps

3

Once done computing equ 9, then A′
11 partition into

A11, A11, A11 and A11 matrix as illustrated in fig 4. The
shaded are in fig. 4 are the block done factorized. Repeatedly
compute equ. 6 to 9 10 for k times, where k = N/β.

2) Parallel LU factorization: Alg. 3 demonstrates the im-
plementation of parallel LU factorization in distributed memo
using four main functions: Diag func, Diag func,
Row func, and Inner func. Diag func computes
the diagonal a single LU block using algo. 2 in a single ma-
chine while the other machines are waiting. Once the diagonal
block Ai,i LU is done, it is broadcasted to all other nodes
(The diagonal block LU is the critical path). All the nodes
have receive Ai,i LU before Diag func and Row func
computes column and row block as done in equ. 7 and 8
respectively using mkl level 3 BLAS triangular solve operation
called cblas xTRSM. The L0 and U0 row and column block
must be sent to all the machine before computing equ. 10 using
Inner func. The Inner func function calls BLAS
level 3 cblas zgemm for matrix multiplication. The four
main functions Diag func, Diag func, Row func,
and Inner func are iteratively called until the whole
matrix is LU factorized.

Algorithm 3 Parallel: block-partitioned dense LU
procedure P LU DEC(∗A,n, num blocks)

1: set mkl num of threads
2: set omp num of threads
3: for i← 0, num blocks do
4: if (i mod P)×Q+ i mod Q == myrank then
5: diag op(i)
6: copy diag block(i)
7: end if
8: Brodact diag block
9: #pragma omp parallel for

10: for j ← i+ 1, num blocks do
11: if (i mod P)×Q+j mod Q == myrank then
12: row op(i)
13: end if
14: if (j mod P) ∗Q+ i mod Q == myrank then
15: col op(i)
16: end if
17: end for
18: for j ← i+ 1, num blocks do
19: Brodact row blocks
20: Brodact col blocks
21: end for
22: for j ← 1 + i, num blocks do
23: #pragma omp parallel for
24: for k ← 1 + i, num blocks do
25: if (j mod P)×Q+ k mod Q == myrank

then
26: inner op(i)
27: end if
28: end for
29: end for
30: end for=0

E. Data communication

Communication overheads between the nodes can signif-
icantly diminish parallel code in distributed memory if not
done efficiently. It is recommended to use MPI collective
communication where possible. It is essential to send a large
message instead of many small messages which introduce
node synchronization overheads [9].

Fig. 5. Memory layout of a row and column of a matrix in row-major storage

For the instance where you want to send a block of data
shaded by blue in row-major in fig.9, MPI user defined
datatype MPI Type vector efficiently sends the whole block
in one message. MPI Type vector for sending the block size
shaded by blue in fig. 9 is illustrated in fig. 6

Fig. 6. A vector datatype is built up out of blocks strides of elements of a
constituent type

The large the block size the better. The computation time
speed for different block size is investigated and plotted in fig.
??.

F. Matrix equation solve

The matrix solve implemented in NEC2++ function
solve ge() is not giving the correct result when solving
LU matrix found using serial LU in algo. 1. Thus we decide
to re-implement this function using standard algo. 4 which
resulted in the same i⃗ as the original NEC2++ solution.

1) Serial solve ge() function re-implementation:
Ax⃗ = b⃗ system linear equation can also be expressed as
LUx⃗ = b⃗ after applying LU factorization. Then first do
forward substitution:

Lx⃗ = y⃗ (11)

using forward substitution. Then solve Ux⃗ = y⃗ using back-
ward substitution.

2) Solving Solution Matrix in parallel: Parallel solution
solve is done using algo. 5 which parallelize the new im-
plementation of serial solve above. The solution solve does
not consider permutation vector because LU decomposition is
done without pivoting.

The first thing that must be done is to gather all the diagonal
block in the global interaction matrix presentation from every
node. All the processors have vector b. OpenMP is used
to parallize the loop. The parallel solving of the interaction

4

Algorithm 4 Serial: solution vector of A ∗ I⃗ = b⃗

procedure SOLVE GE(∗A, ∗P, ∗b, ∗x, n)
1: for i← 0, n do
2: x[i]← b[P [i]]
3: for j ← 0, i do
4: A[i]− = A[i× n+ j]× x[j]
5: end for
6: end for
7: for i← n− 1, 0 do
8: for j ← i+ 1, n do
9: x[i]+ = A[i× n+ j]× x[j]

10: end for
11: x[i]← x[i]/A[i× n+ i]
12: end for=0

Algorithm 5 Parallel: solution vector of A ∗ I⃗ = b⃗

procedure SOLVE GE(∗∗A, ∗P, ∗b, ∗x, n)
1: Gather all A diagonal blocks
2: pragma omp parallel for
3: for i← 0, n do
4: x[i]← b[P [i]]
5: for j ← 0, i do
6: if doIHaveA then
7: compute ilocal and jlocal
8: x+ = A[i× n+ j]× x[j]
9: end if

10: end for
11: Gather all x from all nodes
12: x[i]− = x
13: end for
14: pragma omp parallel for
15: for i← n− 1, 0 do
16: for j ← i+ 1, n do
17: if doIHaveA then
18: compute ilocal and jlocal
19: x+ = A[ilocal × n+ j +l ocal]× x[j]
20: end if
21: end for
22: Gather all x from all nodes
23: x[i]+ = x
24: compute ilocal
25: x[i]← x[i]/A[ilocal × n+ ilocal]
26: end for=0

matrix didn’t give the correct result but it gives a good measure
of computation speed improvement.

IV. PARALLEL PERFORMANCE

When assessing the performance of a parallel code is
importance to determine the speed-up and the efficiency ’ [1].
The efficiency speaks to how well is the code scaling up as
the number of processor increase. The speed up and efficiency
are calculated using equ. (??) and (12).

Efficiency =
timeTakenOnOneProcessor

timeTakenOnpprocessor × p
(12)

SpeedUp =
timeTakenOnOneProcessor

timeTakenOpprocessor
(13)

Fig. 7 shows the time taken to compute LU as the number
of nodes changes.

Fig. 7. Time taken to computer LU when varying the segments

From Fig. 7 shows that increasing number of nodes for small
number of segments do not give a significant speed. As the
number of number of nodes increases, the performance gain
from using many number of nodes become more apparently.

Fig. ?? shows the speed up and the time taken as the number
of nodes increase. for large matrix size of 16385, the speed

Fig. 8. LU speed up vs number of nodes

up for 16 nodes goes to 3. This graph show that the might be
more speed up as the matrix increase.

Fig 1. below shows the matrix filling speed up and efficiency
using maximum maximum number of threads and changing
the number of nodes.

Fig. 9. Column Block distribution Time vs No. of Nodes

The matrix filling using cyclical distribution was not giving
any speed up as the number of nodes increase. and changing

5

the thread were giving inconsistent results because of race
conditions. Thus we decided to experiment with column block
fill so that we can convert it to cyclical block distribution
after the matrix filling.

Fig . 10 shows the speed up and the efficiency of the whole
for different number of machines and segments. the code is
running with maximum number of threads per node.

Fig. 10. The Whole NEC2++ speed up

From the graph, the whole code performace did not get
improved when increasing the number of machine. The speed
up is always below 1 for all different number of nodes and
the efficiency is quite low. provided that the cyclical block
distribution used when running the whole code gives the same
computation time for different number of the machine. The
bottle neck is coming from LU solve because it has a lot of
communication. Few machines will have less communication
compared to many nodes which result in relatively machining
computation speed between single node and 16 nodes.

V. FUTURE RECOMMENDATION

Compute forward substitution while doing LU decomposi-
tion to reduce the communication bottleneck of solution solve
since it would only have to do backward substitution. LU
decomposition is done without pivoting, add pivoting to ensure
LU stability.

VI. CONCLUSION

NEC2++ is parallelized in a distrubuted multicore architec-
ture cluster by parallizing three intensive operation, namely:
LU decomposition taking O(N3) operations, matrix filling and
solving solution matrix which are both taking O(N2) opera-
tions. Matrix filling is parallelized using a cyclical distribution
did improve the computation time. LU is parallelized using
recursive block which allows a use of BLAS3 operations. LU
decomposition showed a speed a good scaling when increasing
number of processors. solution matrix solve parallezation has
communication bottle neck which is deminishing the whole
code perfomace.

VII. PROJECT SUSTAINABILITY OF THE SOLUTION

VIII. RECOMMENDATION FOR FUTURE WORK

IX. CONCLUSION

REFERENCES

[1] D.C. Nitch and A.P.C. Fourie. Parallel implementation of NEC. Applied
Computational Electromagnetics Society Journal, 9(1):5157, 1994

[2] Rubinstein, Abraham, et al. ”A parallel implementation of NEC for
the analysis of large structures.” IEEE Transactions on Electromagnetic
Compatibility 45.2 (2003): 177-188.

[3]
[4] J. DU CROZ AND N. J. HIGHAM, Stability of methods for matrix

inversion, IMA J. Numer. Anal., 12 (1992), pp. 1-19. (Also LAPACK
Working Note 27)

[5] nec2.org, ”Numerical Electromagnics Code.” https://www.nec2.org/
[6] Wikipedia, ”Numerical Electromagnetics Code.”

https://en.wikipedia.org/wiki/Numerical Electromagnetics Code/
[7] Dongarra, J J, Oak Ridge National Lab., TN, van de Geijn, R, and Walker,

D W. A look at scalable dense linear algebra libraries. United States: N.
p., 1992. Web. doi:10.2172/10164371.

[8] Timothy C.A. Molteno, ”NEC2++: An NEC-2 compatible Numerical
Electromagnetics Code”, Electronics Technical Reports No. 2014-3, ISSN
1172-496X, October 2014.

[9] Almási, George, et al. ”Optimization of MPI collective communication
on BlueGene/L systems.” Proceedings of the 19th annual international
conference on Supercomputing. 2005.

X. ACKNOWLEDGEMENTS

REFERENCES

6

